New approach to estimating the cost of common equity capital for public utilities

Pauline M. Ahern · Frank J. Hanley · Richard A. Michelfelder

Published online: 26 August 2011
© Springer Science+Business Media, LLC 2011

Abstract The regulatory process for setting public utilities’ allowed rate of return on common equity has generally used the Gordon DCF, CAPM and Risk Premium specifications to estimate the cost of common equity. Despite the widely known problems with these models, there has been little movement to adopt more recently developed asset pricing models to provide additional evidence for estimating the cost of capital. This paper presents, validates empirically and applies a general yet simple consumption-based asset pricing specification to model the risk-return relationship for stocks and estimate the cost of common equity for public utilities. The model is not necessarily superior to other models in its practical results, yet these results do indicate that it should be used to provide additional estimates of the cost of common equity. Additionally, the model raises doubts as to whether assets such as utility stocks are a consumption (business cycle) hedge.

Keywords Public utilities · Cost of capital · GARCH · Consumption asset pricing model

JEL Classification G12 · L94 · L95

P. M. Ahern · F. J. Hanley
AUS Consultants, Mt. Laurel, NJ 08054, USA
e-mail: pahern@ausinc.com

F. J. Hanley
e-mail: Fhanley@ausinc.com

R. A. Michelfelder (✉)
School of Business, Rutgers University, Camden, NJ 08102-1656, USA
e-mail: richmich@rutgers.edu
1 Introduction

Following electricity deregulation with the National Energy Policy Act of 1992, the estimation of the cost of common equity capital remains a critical component of the utility rate-of-return regulatory process. Since the cost of common equity is not observable in capital markets, it must be inferred from asset pricing models. The models that are commonly applied in regulatory proceedings are the Gordon (1974) Discounted Cash Flow (DCF), the Capital Asset Pricing (CAPM) and Risk Premium Models. There are other tools used to estimate the cost of common equity such as comparable earnings or earnings-to-price ratios, but they are not asset pricing models. The empirical literature on the CAPM is vast (Fama and French (2004)) and the CAPM is used by a number of US regulatory jurisdictions. The DCF model has not been empirically tested to the same extent as the CAPM, yet it is considered by many US regulatory jurisdictions.

The purpose of this paper is to present, test empirically and apply a recently developed general consumption-based asset pricing model that estimates the risk-return relationship directly from asset pricing data and, when estimated with recently developed time series methods, produces a prediction of the equity risk premium that is driven by its predicted volatility. The predicted risk premium is then added to a risk-free rate of return to provide an estimate of the cost of common equity. We predict two forms of the equity risk premium with the model, the risk premium net of the risk-free rate and the equity-to-debt risk premium (equity risk premium net of the relevant bond yield for the company’s stock). Either can be applied to predict the common equity cost of capital for a public utility. Although the model is tested and applied to public utilities for rate of return regulation, it can be used to estimate the cost of capital for any stock. Section 2 reviews the asset pricing models typically used in public utility rate cases and the generalized consumption asset pricing model we propose to estimate the cost of common equity. Section 3 discusses the data and the empirical testing of the consumption asset pricing model. Section 4 reviews the application of the model and compares it with the DCF and CAPM results. Section 5 is the conclusion.

2 DCF, CAPM and consumption asset pricing model

2.1 DCF and CAPM approaches

The standard DCF model frequently used in estimative the cost rate of common equity in regulatory proceedings is defined by the following equation:

\[k = D_0 \frac{(1 + g)}{P_0} + g, \]

where \(k \) is the expected return on common equity; \(D_0 \) is the current dividend per share; \(g \) is the expected dividend per share growth rate; and \(P_0 \) is the current market price.

The DCF was developed by Gordon (1974) specifically for regulatory purposes. Underlying the DCF model is the theory that the present value of an expected future stream of net cash flows during the investment holding period can be determined.
by discounting those cash flows at the cost of capital, or the investors’ capitalization rate. DCF theory indicates that an investor buys a stock for an expected total return rate which is derived from cash flows received in the form of dividends plus appreciation in market price (the expected growth rate) over the investment holding period. Mathematically, the expected dividend yield \(\frac{D_0(1 + g)}{P_0} \) on market price plus an expected growth rate equals the capitalization rate, i.e., the expected return on common equity.

The standard DCF contains several restrictive assumptions, the most contentious of which during utility cost of capital proceedings is typically that dividends per share (DPS), book value per share (BVPS), earnings per share (EPS) as well as market price grow at the same rate in perpetuity. There is also considerable contention over the proper proxy for \(g \), prospective or historical growth in DPS, BVPS, EPS and market price and over what time period. In addition, although the standard DCF described above is a single stage annual growth model, there is considerable discussion over the use of multiple stage growth models during regulatory proceedings. Some analysts use the discrete version and others use the continuous version of the DCF model. Solving these models for \(k \), the cost of common equity, results in differing equations to solve for \(k \). The equation above is from the discrete version. The continuous version uses the current dividend yield and is not adjusted by \(g \), which results in a lower estimate for \(k \).

Because of these and other restrictive assumptions that require numerous subjective judgments in application, it is often difficult for regulatory commissions to reconcile the frequently large disparities in rates of return on common equity recommended by various parties in a public utility rate case.

The CAPM model is defined by the following equation:

\[
k = R_f + \beta (R_m - R_f),
\]

where \(k \) is the expected return on common equity; \(R_f \) is the expected risk-free rate of return; \(\beta \) is the expected beta; and \(R_m \) is the expected market return.

CAPM theory defines risk as the co-variability of a security’s returns with the market’s returns or \(\beta \), also known as systematic or market risk, with the market beta being defined as 1.0. Because CAPM theory assumes that all investors hold perfectly diversified portfolios, they are presumed to be exposed only to systematic risk and the market (according to the model) will not reward them a risk premium for unsystematic or non-market risk. In other words, the CAPM presumes that investors require compensation only for systematic or market risks which are due to macroeconomic and other events that affect the returns on all assets. Mathematically, the CAPM is applied by adding a forward-looking risk-free rate of return to an expected market equity risk premium adjusted proportionately by the expected beta to reflect the systematic risk.

As with the DCF, there is considerable contention during regulatory cost of capital proceedings as to the proper proxies for all components of the CAPM: the \(R_f \), the \(R_m \), as well as \(\beta \). In addition, the CAPM assumption that the market will only reward investors for systematic or market risk is extremely restrictive when estimating the expected return on common equity for a single asset such as a single jurisdictional regulated operating utility. Additionally, this assumption requires that the investor have a perfectly diversified portfolio, that is, one with no unsystematic risk. Since
this assumption is not applicable, estimating the cost of common equity capital for a single utility’s common equity undoubtedly will not reflect the risk actually faced by the imperfectly diversified investor.

As will be discussed in the next section, our application of the risk premium approach, the consumption asset pricing model and GARCH\(^1\) rest on minimal assumptions and restrictions and therefore requires considerably less judgment in its application.

2.2 Risk premium approach, consumption asset pricing models, and GARCH

A widely used model to estimate the cost of common equity capital for public utilities is the risk premium approach. This approach often estimates the expected rate of return as the long-term historic mean of the realized risk premium above an historic yield plus the current yield of the relevant bond applicable to a specific utility or peer group of utilities. Litigants in public utility rate proceedings debate the choice of inputs to estimate the risk premium as well as how far back to reach into history to collect data for calculating an average that is representative of a forward-looking premium.

It is surprising that, as popular as the risk premium method is in public utility rate cases, the intuitively appealing general consumption-based asset pricing model, with its minimal assumptions and strong theoretical foundation, has not been applied to estimate the cost of common equity capital for public utilities. The model provides projections of the conditional expected risk premium on an asset based on its relation to its predicted conditional volatility. This model generalizes the well known special case asset pricing models such as the Merton (1973) intertemporal capital asset pricing model, Campbell (1993) intertemporal asset pricing model, and the habit-persistence model of Campbell and Cochrane (1999), which are special cases of the general model. The relation of the model to their specialized cases can be found in Cochrane (2006) and Cochrane (2007). The approach of consumption asset pricing models is to make investment decisions that maximize investors’ utility from the consumption that they ultimately desire, not returns.

Even if the model is not used to project directly the expected risk premium, it can, at a minimum, be used to verify that the risk premia data chosen for estimating the cost of capital is empirically validated by fitting the model well. The model can be used to predict the equity risk premia net of the risk-free rate (equity risk premium) or to predict the equity-to-debt risk premium for a firm. We perform both of these empirical tests in this paper. The general consumption-based asset pricing model developed in Michelfelder and Pilotte (2011) and based on Cochrane (2004) provides the relationship of the ex ante risk premium to an asset’s own volatility in return:

\[
E_t[R_{i,t+1}] - R_{f,t} = -\frac{\sigma_{t+1}[M_{t+1}]}{E_t[M_{t+1}]} vol_t[R_{i,t+1}] corr_t[M_{t+1}, R_{i,t+1}].
\]

\(^1\) GARCH refers to the generalized autoregressive conditional heteroskedasticity regression model which is discussed below.
where vol_t is the conditional volatility, $corr_t$ is the conditional correlation, and M_{t+1} is the stochastic discount factor (SDF).

The SDF is the intertemporal marginal rate of substitution in consumption, or, $M_{t+1} = \beta \frac{U_{c,t+1}}{U_{c,t}}$, where the U_c’s are the marginal utilities of consumption in the next period, $t + 1$, and the current period, t, and β is the discount factor for period t to $t + 1$. Equation 1 shows that the algebraic sign of the relation between the expected risk premium and the conditional volatility of an asset’s risk premium is determined by the correlation between the asset’s return and the SDF. That is, the direction of the relation between the asset return and the ratio of intertemporal marginal utilities in consumption inversely determines the relation between the expected risk premium and conditional volatility. When the correlation is equal to negative one, the asset’s conditional expected risk premium is perfectly positively correlated with its conditional volatility. A positive relation between the conditionally expected risk premium and volatility obtains when $-1 < corr_t < 0$. A negative relation obtains when $0 < corr_t < 1$. For an asset that represents a perfect hedge against shocks to the marginal utility of consumption, with $corr_t = 1$, there will be a perfect negative correlation between the conditionally expected risk premium and its volatility. Therefore, estimates of the relation between the first two conditional moments of a public utility stock’s returns provide a direct test of the effectiveness of a public utility stock, or any asset, as a consumption hedging asset. In Eq. 1, $vol_t[M_{t+1}]/E_t[M_{t+1}]$ is the slope of the mean-variance frontier. If this slope changes over time, the estimated relation between the stock’s risk and return will vary over time. This model can also be viewed simplistically as the projected expected risk premium as a function of its own projected risk, given information available at time t.

Note that the model allows for the expected risk premium to be negative if the asset hedges shocks to the marginal utility of consumption. Investors are willing to accept an expected rate of return lower than the risk-free rate of return if the pattern of volatility is such that returns are expected to rise with expected reductions in consumption. Simply, investors are willing to pay a premium for a higher level of returns volatility that has the desired pattern of returns. These desired returns patterns have a tendency to offset drops in consumption. Therefore, this model shows that investors may not be averse to volatility, but rather to the timing of expected changes in returns.

Summarizing, several conclusions can be drawn from the general model of asset pricing. First, the sign of the relation between a stock’s risk premium and conditional volatility depends on the extent to which the stock serves as an intertemporal hedge against shocks to the marginal utility of consumption. Second, the relation between stock risk and return may be time-varying depending on changes in the slope of the mean-variance frontier. Third, hedging assets have desired patterns of volatility that result in expected rates of return that are less than the risk-free rate. We do not expect

2 A hedging asset is one that has a positive increase in returns that is coincident with a positive shock in the ratio of intertemporal marginal utilities of consumption. Note that if we assume a concave utility function in consumption, as consumption declines, the marginal utility of consumption rises relative to last period marginal utility. If we think of a decline in consumption as a contraction in the business cycle, the hedging asset delivers positive changes in returns when the business cycle is moving into a contraction, and therefore the asset is a business cycle hedge.
that public utility stocks serve as a hedging asset as they are not viewed as defensive stocks (they do not rise in value during downturns in the stock market) due to asymmetric regulation and returns as discussed in detail in Kolbe and Tye (1990). Under asymmetric regulation, utility regulators have a tendency to allow the return on equity to fall below the allowed return during downturns in the business cycle and to reduce the return should it rise above the allowed return during expansions. Therefore we expect that the parameter estimates of the return-risk relationship to be positive as utility stocks are hypothesized to not be hedges.

We use the GARCH model to estimate the general asset pricing model since the GARCH model accommodates ARCH effects that improve the efficiency of the parameter estimates. It also provides a volatility forecasting model for the conditional volatility of the asset’s risk premium. The conditional volatility projection is used, in turn to predict the expected risk premium. We also use the GARCH-in-Mean model (GARCH-M) since it specifies that the conditional expected risk premium is a linear function of its conditional volatility. There is a vast body of literature that estimates asset pricing models with the GARCH and GARCH-M methods and therefore we will not attempt to summarize them here.

The GARCH-M model was initially developed and tested by Engle et al. (1987) to estimate the relationship between US Treasury and corporate bond risk premia and their expected volatilities. The GARCH-M model is specified as:

\[
R_{t+1} - R_{f,t+1} = \alpha \sigma_{t+1}^2 + \epsilon_{t+1} \\
\sigma_{t+1}^2 = \beta_0 + \beta_1 \sigma_t^2 + \beta_2 \epsilon_t^2 + \eta_{t+1} \\
\epsilon_t | \psi_{t-1} \sim T(0, \sigma_t^2)
\]

where \(R_{t+1} \) is the expected total return on the public utility stock index or individual utility stock; \(R_{f,t+1} \) is the risk-free rate of return or the yield on an index of public utility bonds of a specified bond rating for the equity-to-debt premium; \(\sigma_{t+1}^2 \) is the conditional or predicted variance of the risk premium that is conditioned on past information (\(\psi_{t-1} \)); and \(\epsilon_t \) is the error term that is conditional on \(\psi_{t-1} \).

The conditional distribution of the error term is specified as the non-unitary variance T-distribution due to the thick-tailed distribution of the risk premia data. If the error distribution is thick-tailed, using an approximating distribution that accommodates thick tails improves the efficiency of the estimates. The parameter, \(\alpha \), is the return-to-risk coefficient as specified in Eq. 1 as:

\[
\alpha = -\frac{vol_t[M_{t+1}]}{E_t[M_{t+1}]} corr_t[M_{t+1}, R_{i,t+1}]
\]

Note that the coefficient will be positive if the conditional correlation between the SDF and the asset return is negative, indicating that the stock is not a hedging asset. Recall that the SDF is the ratio of intertemporal marginal utilities. Assuming a concave utility function, an upward shock in the ratio implies falling consumption, therefore an associated rise (positive correlation) in the return (\(R_i \)) would offset the reduction
in consumption, thereby causing the sign of α to be negative. The parameter, α, is also the ratio of risk premium to variance, or, the Sharpe ratio.

The intercept in Eq. 2 is restricted to zero as specified by the general asset pricing model specification. The restriction on the intercept equal to zero has been found to be robust in producing consistently positive and significant relationships between equity risk premia and risk in GARCH-M models. This is discussed in Lanne and Saikkonen (2006) and Lanne and Luoto (2007). We have found the same results in our modeling in this paper, although we have excluded these results for brevity (available upon request). Therefore we specify the prior assumption that the intercept or the “excess” return, i.e., the return not associated with risk to be equal to zero and drop the intercept from the model.

The consumption asset pricing model is estimated in the empirical section of the paper and applied in the applications section of the paper. The model is tested to (1) determine if equity-to-debt risk premium indices for utilities of differing risk specified by differing bond ratings are validated by the asset pricing model and therefore have some empirical support for risk premium prediction and application to utility cost of capital estimation, (2) determine whether equity risk premia can be predicted and fit the model and therefore be used to estimate the cost of common equity, (3) empirically test the consumption asset pricing model, and (4) ascertain whether utility stocks are assets that hedge shocks to the marginal utility of consumption.

If utility stocks are hedging assets then the cost of common equity should reflect a downward adjustment to a specified risk-free rate to reflect investors’ preferences for a hedge and the compensation that they are willing to pay for it.

3 Data and empirical results

We use portfolios as represented by public utility stock and bond indices to estimate the conditional return-risk relationship for the equity-to-debt premium. The equity-to-debt risk premium data employed for estimating Eq. 1 with the GARCH-M conditional return-risk regressions are monthly total returns on the Standard and Poor’s Public Utilities Stock Index (utility portfolio), and the monthly Moody’s Public Utility Aa, A, and Baa yields for the debt cost. We also obtained equity risk premia for the utility portfolio using the Fama-French specified risk-free rate of return, which is the holding period return on a 1-month US Treasury Bill. The data range from January 1928 to December 2007 with 960 observations. The return-risk relationships for the equity-to-debt premia are risk-differentiated by their own bond rating.

As a check, we also estimate Eq. 1 with the GARCH-M for large common stock returns using the monthly Ibbotson Large Company Common Stocks Portfolio total returns and the Ibbotson US Long-Term Government income returns as the risk-free rate. Additionally, as another check, we do the same for the University of Chicago’s Center for Research in Security Prices value-weighted stock index (CRSP) using the Fama-French risk-free rate. This is the Fama-French specification of the market equity risk premium. The data range from January 1926 to December 2007 with 984 observations for the Large Company Common Stock estimation and the data ranges...
Table 1 Descriptive statistics: public utility and large company common stocks equity-to-debt and equity risk premia

<table>
<thead>
<tr>
<th>Utility bond rating</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Skewness</th>
<th>Kurtosis</th>
<th>JB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aa</td>
<td>0.0037</td>
<td>0.0568</td>
<td>0.0744</td>
<td>10.07</td>
<td>2,001.2***</td>
</tr>
<tr>
<td>A</td>
<td>0.0035</td>
<td>0.0568</td>
<td>0.0632</td>
<td>10.06</td>
<td>1,991.8***</td>
</tr>
<tr>
<td>Baa</td>
<td>0.0031</td>
<td>0.0568</td>
<td>0.0375</td>
<td>10.02</td>
<td>1,973.6***</td>
</tr>
<tr>
<td>Ibbotson</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large common stocks</td>
<td>0.0054</td>
<td>0.0554</td>
<td>0.4300</td>
<td>12.84</td>
<td>3,954.7***</td>
</tr>
<tr>
<td>CRSP value-weighted stock index</td>
<td>0.0062</td>
<td>0.0544</td>
<td>0.2309</td>
<td>10.92</td>
<td>2,519.1***</td>
</tr>
</tbody>
</table>

The public utility equity-to-debt risk premia monthly time series is from January 1928 to December 2007 with 960 observations. The equity risk premium monthly time series for the Large Common Stocks and the CRSP index are January 1926 to December 2007 with 984 observations, and January 1926 to December 2007 with 984 observations, respectively. The public utility stocks equity-to-debt risk premia are calculated as the total return on the S&P Public Utilities Index of stocks minus the Moody’s Public Utility Aa, A, and Baa Indices yields to maturity. The Large Company Common Stock equity risk premia are the monthly total returns on the Ibbotson Large Company Common Stocks Portfolio minus the Ibbotson Long-Term US Government Bonds Portfolio income yield. The CRSP equity risk premia, or the Fama-French market risk premia are the CRSP total returns on the value-weighted equity index minus the 1-month holding period return on a 1 month Treasury Bill. The Jarque-Bera (JB) statistic is a goodness-of-fit measure of the departure of the distribution of a data series from normality, based on the levels of skewness and excess kurtosis. The JB statistic is χ^2 distributed with 2$^{\circ}$ degrees of freedom. *** Significant at 0.01 level, one-tailed test.

Table 1 displays the descriptive statistics for these data. We have estimated the mean, standard deviation, skewness and kurtosis parameters, as well as the Jarque-Bera (JB) statistic to test the distribution of the data. The means of the utility equity-to-debt risk premia fall as the risk (bond rating) declines. This is consistent with the notion that larger yields are subtracted from stock returns the lower the bond rating. Intertemporally, there is an inverse relationship between risk premia and interest rates (See Brigham et al. (1985) and Harris et al. (2003)). The mean for risk premia will have a tendency to be larger during low interest rate periods.

Not surprisingly, large company common stocks have the highest mean risk premia as the majority of these firms are not rate-of-return regulated firms with a ceiling on their ROE’s close to their cost of capital. Interestingly, the standard deviations of the utility stock returns are similar and slightly higher than large company common stocks. Skewness coefficients are small and positive except for Ibbotson large company common stock returns and CRSP returns that have large positive skewness. This suggests that large unregulated stocks have a tendency to have more and larger positive shocks in returns than do utilities that are rate of return regulated. The kurtosis values show that all of the risk premia are thick-tail distributed. This is also found in the significant JB statistics that test the null hypothesis that the data are normally distributed. The null hypothesis is rejected for all assets. The high kurtosis, low skewness, and significant JB statistics show that the risk premia data are substantially thick-tailed, except for non-utility stocks that are both skewed and thick-tailed. Therefore, robust estimation methods are required to produce efficient regression estimates with non-normal data. Additionally, although not shown but available upon request, the serial correlation and
ARCH Lagrange Multiplier tests show that residuals from OLS regressions of risk premia on volatilities follow an ARCH process. Therefore, the GARCH-M method will improve the efficiency of the estimates. We specify the regression error distribution as a non-unitary variance T-distribution so that thick-tails could be accommodated in the estimation and therefore produce increasingly efficient parameter estimates.

We used maximum likelihood estimation with the likelihood function specified with the non-unitary-variance T-distribution as the approximating distribution of the residuals to accommodate the thick-tailed nature of the error distribution. The equations are estimated as a system using the Marquardt iterative optimization algorithm. The chosen software for estimating the model was EViews® version 6.0 (2007).

Table 2 shows the GARCH-M estimations for the consumption asset pricing Eq. 1. We have estimated Eq. 1 for the utility equity risk premia using the Fama-French risk-free rate in addition to the equity-to-debt risk premia risk-differentiated by bond ratings and the two measures of the market equity risk premium. The chosen measure of volatility is the variance of risk premium (in contrast to other such measures such as the standard deviation or the log of variance. Although these results are not shown for brevity, they are robust to these other measures of volatility). The slope, which is the predicted return-to-predicted risk coefficient and Sharpe ratio, is positive and significant at the 99% level for all assets except the utility stock returns with Baa bonds, which is significant at the 95% level. Given that all slopes are positive, public utility stocks are not found to hedge shocks to the marginal utility of consumption. Note that the reward-to-risk slope rises as bond rating rises. This suggests that lower risk utility stocks provide a higher incremental risk-premium for an increase in conditional volatility. This is consistent with other studies that find that lower risk assets, such as shorter maturity bonds, have higher Sharpe Ratios than long-term bonds and stocks. See Pilotte and Sterbenz (2006) and Michelfelder and Pilotte (2011).

The variance equation shows that all GARCH coefficients (β’s) are significant at the 1% level and the sums of β₁ and β₂ are close to, but less than 1.0, indicating that the residuals of the risk premium equation follow a GARCH process and that the persistence of a volatility shock on returns and stock prices for utility stocks is temporary. The estimates of the non-unitary variance T-distribution degrees of freedom parameter are low and statistically significant, indicating that the residuals are well approximated by the T. Similar values for the log-likelihood functions (Log-L) show that each of the regressions has a similar goodness-of-fit. Chi-squared distributed likelihood ratio tests (not shown but available upon request) that compare the goodness of fit among the T and normal specifications of the likelihood function of the GARCH-M regressions show that the T has a significantly better fit than the normal distribution.

The GARCH-M results for the large company common stocks portfolio are similar to those of the utility stocks. Not surprisingly, large company common stocks do not hedge shocks to the marginal utility of consumption and volatility shocks temporarily affect their valuations. The exception is that the return-risk slope is substantially higher than utility stock slopes. This is partially due to the risk-free nature of the risk-free rates used with the non-utility equity risk premia compared to the
Table 2 Estimation of return-risk relation: public utility and large company common stocks

<table>
<thead>
<tr>
<th>Utility bond rating</th>
<th>α</th>
<th>β₀</th>
<th>β₁</th>
<th>β₂</th>
<th>Log-L</th>
<th>T dist. D.F.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aa</td>
<td>1.5183***</td>
<td>0.0000**</td>
<td>0.8791***</td>
<td>0.1031***</td>
<td>1,604.4</td>
<td>9.9254***</td>
</tr>
<tr>
<td></td>
<td>(0.5308)</td>
<td>(0.0000)</td>
<td>(0.0230)</td>
<td>(0.0219)</td>
<td>(3.0272)</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>1.4536***</td>
<td>0.0000**</td>
<td>0.8790***</td>
<td>0.1033***</td>
<td>1,605.0</td>
<td>9.9381***</td>
</tr>
<tr>
<td></td>
<td>(0.5308)</td>
<td>(0.0000)</td>
<td>(0.0230)</td>
<td>(0.0220)</td>
<td>(3.0408)</td>
<td></td>
</tr>
<tr>
<td>Baa</td>
<td>1.3318**</td>
<td>0.0000**</td>
<td>0.8789***</td>
<td>0.1040***</td>
<td>1,605.2</td>
<td>10.0***</td>
</tr>
<tr>
<td></td>
<td>(0.5303)</td>
<td>(0.0000)</td>
<td>(0.0229)</td>
<td>(0.0220)</td>
<td>(3.0540)</td>
<td></td>
</tr>
<tr>
<td>Fama-French Rₖ</td>
<td>2.1428***</td>
<td>0.0000**</td>
<td>0.8811***</td>
<td>0.0979***</td>
<td>1,601.0</td>
<td>9.8773***</td>
</tr>
<tr>
<td></td>
<td>(0.5318)</td>
<td>(0.0000)</td>
<td>(0.0232)</td>
<td>(0.0212)</td>
<td>(2.9700)</td>
<td></td>
</tr>
<tr>
<td>Ibbotson Large company common stocks</td>
<td>2.7753***</td>
<td>0.0001***</td>
<td>0.8381***</td>
<td>0.1186***</td>
<td>1,620.8</td>
<td>8.8573***</td>
</tr>
<tr>
<td></td>
<td>(0.5513)</td>
<td>(0.0000)</td>
<td>(0.0269)</td>
<td>(0.0332)</td>
<td>(2.1613)</td>
<td></td>
</tr>
<tr>
<td>CRSP value-weighted stock index</td>
<td>3.3873***</td>
<td>0.0001***</td>
<td>0.8330***</td>
<td>0.1149***</td>
<td>1,598.9</td>
<td>8.8571***</td>
</tr>
<tr>
<td></td>
<td>(0.5673)</td>
<td>(0.0000)</td>
<td>(0.0270)</td>
<td>(0.0358)</td>
<td>(1.9505)</td>
<td></td>
</tr>
</tbody>
</table>

The results below are the GARCH-in-Mean regressions for the risk premium \((R_{t+1} - R_{f,t+1})\) on the conditional variance of the risk premium \((\sigma^2_{t+1})\) in the mean equation. The intercept in the mean equation is restricted to be equal to zero. The public utility equity-to-debt risk premia monthly time series is from January 1928 to December 2007 with 960 observations. The equity risk premium monthly time series for the Large Company Common Stocks and the CRSP index are January 1926 to December 2007 with 984 observations, and January 1926 to December 2007 with 984 observations, respectively. The public utility stocks equity-to-debt risk premia are calculated as the total return on the S&P Public Utilities Index of stocks minus the Moody’s Public Utility Aa, A, and Baa Indices yields to maturity. The Large Company Common Stock equity risk premia are the monthly total returns on the Ibbotson Large Company Common Stocks Portfolio minus the Ibbotson Long-Term US Government Bonds Portfolio income yield. The CRSP equity risk premia, or the Fama-French market risk premia are the CRSP total returns on the value-weighted equity index minus the 1-month holding period return on a 1 month Treasury Bill. The estimated model is:

\[
R_{t+1} - R_{f,t+1} = \alpha \sigma^2_{t+1} + \epsilon_{t+1} \quad \text{where} \quad \alpha = -\frac{vol[M_{t+1}]}{\sigma_t} \cdot \text{corr}[M_{t+1}, R_{t+1}]
\]

\[
\sigma^2_{t+1} = \beta_0 + \beta_1 \sigma^2_t + \beta_2 \epsilon^2_t + \eta_{t+1}
\]

The conditional distribution of the error term is the non-unitary variance T-distribution to accommodate the kurtosis of the risk premia and error term. Standard errors are in parentheses. ***, **, * denote significance at the 0.01, 0.05, and 0.10 levels, respectively for two-tail tests.

Utility bond yields that reflect risk. The utility stocks slope value of 2.1428 using the Fama-French risk-free rate is closer to the higher CRSP value of 3.3873 that is also based on the Fama-French risk-free rate. This is inconsistent with previous results herein and in other papers that find that Sharpe Ratios are lower for higher risk assets unless this finding can be interpreted as utility stocks having more risk than non-regulated stocks. The standard deviations on Table 1 suggest that utility stock return volatilities are as high as the stock returns of non-regulated firms. However, similar model estimates of portfolios of common stocks yield unstable results, such as negative as well as positive return-risk slopes when the intercept is not restricted to zero. See Campbell (1987), Glosten et al. (1993), Harvey (2001), and Whitelaw (1994).
Stock market results are highly sensitive to empirical model specification. Many studies do not consider the impact of a zero-intercept prior restriction on the stability of their results. This simple innovation has led to more consistent results in modeling stock market risk-return relationships, and therefore we have included it in this paper.

The estimation of the consumption asset pricing model for utility stock equity-debt risk premia shows that the use of bond-rating risk-differentiated risk premia are validated as their risk-return relationships are well-fitted by theoretical and empirical models of risk and return. Therefore, these data impound good representations of the risk and reward relationship.

One concern is the intertemporal stability of the alphas. Figure 1 plots the utility stock portfolio alpha (using the Fama-French R_f to calculate the premium) and its standard error for 240 month rolling regressions of the model estimated with GARCH-M in the same manner as described above to review the intertemporal stability of the alpha. A 20-year period was used for each estimation to trade off timeliness with sufficient observation of up and down stock market regimes and business cycles. This resulted in 720 estimated alphas from 1947 to 2007. The results show that the utility alpha is stable to the extent that the algebraic sign is always positive and generally significant, therefore the nature of utility stocks are assets that are not and have never been hedges during the second half of the twentieth century up to the present. The value of the alpha does change substantially. The mean of the alpha is 4.40 with a range from -0.11 (insignificantly different from 0) to 11.66. As a comparison, the alpha for the CRSP value-weighted stock index was also estimated with rolling regressions in the same manner and for the same time period. Figure 2 is a plot of the CRSP alpha and standard error. Note that the general stock market alpha is similar to that of utility stocks. They are all positive and almost all statistically significant and follow a strikingly similar cycle. Figure 3 plots both the utility and stock market alphas and demonstrates the similarity. The correlation coefficient between the utility and stock market alphas is 0.88. Recalling that the alpha is a Sharpe Ratio, we see that return to risk ratio does change substantially. This is consistent with the results in Pilotte and Sterbenz (2006).

One other interesting observation is that the standard errors of the alphas are highly stable over the study period and are very similar in magnitude regardless of the size of the corresponding alpha. Whereas the alpha follows a cyclical pattern, the volatility in alpha is highly stationary around a constant, long-run mean.

The GARCH-M model estimations of the consumption asset pricing model were specified with variance as the measure of volatility. We also performed the same model estimations with alternative specifications of volatility such as the standard deviation and the log of variance and the results were not sensitive to this specification.

4 Application

We apply the model in this section to compare the cost of common equity capital estimates with the DCF and CAPM models. Using EViews© Version 6.0, we estimated the model coefficients (α, β's) over rolling 24 month periods ending December 2008.
We repeated the estimation over 5, 10, 15, 20 and 79 year periods. Predicted monthly variances (σ^2_{t+1}) were generated from these estimations to produce predicted risk premiums that were calculated by multiplying the predicted variance by the “α” slope.

3 We did not include the results of the 10 and 15 year estimations to abbreviate the amount of empirical results presented since they added no material insights beyond those already presented.
coefficient. To test the stability of the predicted risk premia over time, the predicted risk premia were calculated using either the predicted variance over each entire time period or the last monthly (spot) predicted variance. Table 3 presents the mean predicted risk premia, the range of predicted premia and the standard deviations for each time period. It is clear from the results that the risk premia are more stable over the rolling 24 month period when calculated using the average predicted variance compared with using the spot variance. Secondly, the 20 and 79 year means are substantially more stable and reasonable in magnitude than the 5 year means.

Next, given the lessons from the analyses above, we apply the model to mechanically\(^4\) estimate the cost of common equity for 8 utility companies using the model and

\[^4\text{The term “mechanically” in this context means that the resulting values have been developed in a consistent manner with the same inputs across all utility stocks but no subjective judgment was used to develop final values for each specific utility stock application.}\]
the DCF and CAPM as comparisons. We also calculated the realized market return for comparison. Two publicly-traded electric, electric and gas combination, gas, and water utilities respectively were chosen for the application. The Gordon (1974) DCF and CAPM models are used in many utility regulatory jurisdictions in the US.

The DCF was applied using a dividend yield, \(D_0 / P_0 \), derived by dividing the year-end indicated dividend per share \((D_0)\) by the year-end spot market price \((P_0)\). The dividend yield is grown by the year-end I/B/E/S five year projected earnings per share growth rate \((g)\) to derive \(D_0(1 + g)/P_0\). The one-year predicted dividend yield is then added to the I/B/E/S five-year projected EPS growth rate to obtain the DCF estimate of the cost of common equity capital, \(k\). This study was conducted for the 5 years ending 2008.

The CAPM was applied by multiplying the Value Line beta \((\beta)\) available at year-end for each company by the long-term historic arithmetic mean market risk premium \((R_m - R_f)\). \(R_m - R_f\) is derived as the spread of the total return of large company common stocks over the income return on long-term government bonds from the Ibbotson SBBI 2009 Valuation Yearbook. The resulting company-specific market equity risk premium is then added to a projected consensus estimate of the yield on 30-year U.S. Treasury rate provided by Blue Chip Financial Forecasts as the risk-free rate \((R_f)\) to obtain the CAPM result. This study was also conducted over the 5 years ending 2008.

Figures 4–11 show the histograms of the cost of common equity capital estimations for each of the eight public utility stocks and the realized market returns in the forthcoming year. The consumption asset pricing model appears to track more consistently with the CAPM than with the DCF which seems to produce generally lower values than the other methods. The consumption asset pricing model results are similar to the CAPM. The model and the CAPM compete as the best predictor of the rate of return on the book value of common equity (not shown but available upon request), but none of the expected returns were good predictors of market returns. That does not infer that they were not good predictors of expected market returns. These results are an initial indicator that the consumption asset pricing model provides reasonable and stable results. This paper does not suggest at this early juncture that the consumption asset pricing model is superior to the CAPM or DCF, although it is based on far less restrictive assumptions than these other models. For example, both the DCF and CAPM assume that markets are efficient. Many assume that the DCF requires that the market-to-book ratio to always equal one, whereas the long-term value for the Standard and Poor’s 500 is equal to 2.34. The CAPM assumes that investors demand higher returns for higher volatility and that the minimum required return is the risk-free rate, whereas the consumption asset pricing model allows for investors to require returns less than the risk-free rate for stocks that may have relatively higher volatility but are hedging assets that have desirable return fluctuation patterns that offset downturns in the business cycle. Unlike the CAPM, the model prices the risk to which investors are actually exposed, whether it’s systematic risk or not. Some investors are diversified and some are not; the model prices whatever risk to which the aggregate of investors of the specific stock is exposed.

We find that the consumption asset pricing model should be used in combination with other cost of common equity pricing models as additional information in the devel-
New approach to estimating the cost of common equity capital

Figs. 4–11 Comparison of the cost of common equity estimates and market

depment of a cost of common equity capital recommendation. Practitioners may find
the modeling methods and the use of relatively advanced econometric methods rather
cumbersome. The software for performing these estimations is readily available from
EViews© and SAS©, two commonly available software packages at utilities, consult-

Cost of Common Equity Results for National Fuel Gas Co. Compared to Market Return*

* Market returns calculated for the following years: 2005 - 2009

Cost of Common Equity Results for Lacele Group Compared to Market Return*

* Market returns calculated for the following years: 2005 - 2009
Missing DCF Cost of Capital Estimates Due to Unavailable Growth Rate

Cost of Common Equity Results for California Water Service Group Compared to Market Return *

* Market returns calculated for the following years: 2005 - 2009

Cost of Common Equity Results for Middlesex Water Company Compared to Market Return*

* Market returns calculated for following years: 2005 - 2009
Missing DCF Cost of Capital Estimate Due to Unavailable Growth Rate

Figs. 4–11 continued
ing firms and financial firms. Recent Ph.D. and M.S. holding members of research departments of investment and consulting firms have ready access to the model and methods discussed in this paper, although it will require years for these tools, like any “new” technology, to diffuse into standard use. Another problem is that the model requires a substantial time series history on stock returns data to develop stable estimates of risk premia This is problematic especially for the electric and gas utility industries that have consolidated with many mergers in the recent past. This problem can be addressed by developing and predicting the value-weighted risk premium of a portfolio of similar stocks such as electric utilities that have nuclear generating assets. The specific stock in question would be included in the returns index with a weight based on market capitalization that would go to 0 when the stock price history is no longer existent reaching back into the past.

5 Conclusion

The purpose of this paper is to introduce, test empirically and apply a general consumption based asset pricing model that is based on a minimum of assumptions and restrictions that can be used to predict the risk premium to be applied in estimating the cost of common equity for public utilities in regulatory proceedings. The results support the simple consumption-based asset pricing model that predicts the ex ante risk premium with a conditionally predicted volatility in risk premium. The estimates of the cost of common equity from the consumption asset pricing model compare well with rates of return on the book value of common equity and with the CAPM, although both the model and the CAPM results are substantially higher than the DCF. This is quite common in the practice of the cost of common equity in the utility industry. The results of the model are stable and consistent over time. Therefore the model should be considered as it provides additional evidence on the cost of common equity in general and specifically in public utility regulatory proceedings. Secondly, the use of bond-rated yields to predict risk differentiated equity-to-debt risk premia is supported by the empirical evidence and therefore should be applied in estimating the cost of common equity. Finally, the robust empirical evidence on the positive risk-return relationship also shows that utility stocks are not a consumption hedge and are not good hedging securities against contractions in the economy. The model and estimation methodology presented in this paper provide a relatively simple tool to determine whether any asset is a hedge to adverse changes in the business cycle through the level of consumption in the economy.

Acknowledgments We would like to thank Dylan D’Ascendis, Sal Giunta, Selby Jones, III and Alison McVicker for highly capable research assistance, participants at the Center for Research in Regulated Industries Eastern Conferences and the Society of Utility Regulatory and Financial Analysts Annual Financial Forum, two anonymous reviewers and the editor for helpful comments.

References